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In a previous paper, the concept of a locally plane wave was explained

theoretically. In such a con®guration, the fringe pattern recorded on the ®lm can

be considered as a phase analyser. Here the experimental analysis is presented,

showing examples of interesting applications to X-ray refractometry and to the

visualization of the strain ®eld around isolated defects.

1. Introduction
In previous papers (Mocella et al., 1999, 2000), we have shown

that, under speci®c conditions which are ful®lled at the long

beamline ID19 of the ESRF, the incident spherical wave can

be considered as a locally plane wave in a Bragg diffraction

experiment. This means that each point along the exit surface

of the crystal `sees' a locally plane wave having an angular

deviation from the exact Bragg condition depending on the

position of this point. We have shown that the intensity pro®le

recorded across the beam diffracted by a perfect crystal, in the

Laue geometry, reproduces the oscillations of the rocking

curve. These oscillations, which arise from the PendelloÈ sung

interferences between the wave®elds inside the crystal, are

very sensitive to phase perturbations in the propagation of the

X-rays. Phase perturbations induce visible changes in the

recorded intensity pro®le. The sensitivity of this pro®le to the

phase of the incident wavefront allows the detection of phase

modi®cations, produced along the path of the incident beam,

either outside or inside the crystal. In this paper, we shall

present applications of this phenomenon to a quantitative

refractive index measurement of the crystal and to the direct

visualization of the strain ®eld associated with isolated defects

in the crystal.

2. The locally plane wave conditions
We will ®rst recall the main results explained in detail by

Mocella et al. (2000). Let us consider a plane parallel crystal

plate of thickness t, in a symmetrical Laue geometry (Fig. 1),

with Bragg angle �B set for the central part of the incident

beam. As explained by Mocella et al. (2000), one can establish

a relation between the local angle of incidence � �� � and the

coordinate � of any point, along the entrance surface of the

crystal,

��in �� � � � �� � ÿ �B � � cos �B=�L0�; �1�

where L0 is the source-to-crystal distance, ��in �� � is the

departure from the Bragg condition which is exactly satis®ed

for � = 0.

The portion of the incident wavefront on the entrance

surface contributing to the diffracted wave at a point P 0 on the

exit surface is strictly limited (Authier & Simon, 1968) by the

intersection of the entrance surface with the two lines drawn

from P 0 in the incident and in the re¯ected directions

(segment MN in Fig. 1). In this `in¯uence domain', of half-

width l � t tan �B along the entrance surface, the sphericity of

the wavefront can be neglected if the maximum distance

between the spherical wavefront and its tangential plane,

estimated in the paraxial approximation as t sin �B� �2=2L0, is

smaller than �=2 [equations (9) and (10) in Mocella et al.

(2000)],

l � ��L0�1=2= cos �B () t � ��L0�1=2= sin �B � tlp: �2�

Condition (2) means that the projection l 0 = l cos �B of the

in¯uence domain on the plane perpendicular to the incident

direction is much smaller than the radius of the Fresnel zone,

�L0� �1=2.

Figure 1
Geometry of the locally plane wave setting. The exact Bragg condition
corresponds to point O. In the considered symmetrical case, the
coordinate � of the point P 0 is equal to the coordinate x of the point P
which is the middle of the in¯uence domain MN on the entrance surface.



Condition (2) is well satis®ed in our experiments at the

ID19 beamline at the ESRF since L0 = 145 m. We may thus

consider that each point of coordinate � along the entrance

plane `sees' a locally plane wave in off-Bragg position ��in �� �
given by (1). The intensity pro®le I x� � in the re¯ected beam

reproduces the re¯ectivity curve R � ÿ �B� �, also called the

`rocking curve', usually de®ned as the measured re¯ectivity

when the crystal is rotated around the Bragg position in a

parallel incident beam. Consequently, if condition (2) is

satis®ed, the intensity distribution I x� � of the topograph is

I�x� = R x cos �B=L0� � and appears as a set of parallel fringes as

shown in Fig. 2. These fringes are regularly spaced, except in

the central region of the pattern, with a spacing equal to

�L0=t sin 2�B� � (e.g. Pinsker, 1978).

The ®nite size of the source produces a blurring of the fringe

pattern. It is easy to understand, from Fig. 1, that a displace-

ment of the point source S, along the x direction, corresponds

to the same displacement of the fringe pattern; therefore, the

size a of the source along the x direction must be much smaller

than the fringe spacing, in order to preserve the visibility of

the fringes. This is expressed as

a� �L0= t sin 2�B� �: �3�

The lateral (or spatial) coherence width (Born & Wolf, 1983)

perpendicular to the incident direction is de®ned as

�L0=�a cos �B�. Condition (3) can therefore be interpreted by

saying that the lateral coherence width must be much larger

than the full width 2l 0 of the in¯uence domain in the plane

perpendicular to the mean incident direction. The width 2l 0 =

2l cos �B = 2t sin �B is the projection of the segment MN in this

plane (Fig. 1).

The fringe pattern is also blurred by the wavelength

bandwidth. A change �� of the wavelength � induces a

change ��B = ��=� tan �B of the Bragg angle �B and conse-

quently a displacement of the fringes equal to �L=cos �B���B.

This displacement must again be much smaller than the fringe

spacing, i.e.

�L0= cos �B����=�� tan �B � �L0=�t sin 2�B�
or �4�

�2=��� 2t sin �B tan �B:

This can be interpreted, in analogy with (3), by saying that the

longitudinal (or temporal) coherence length �2=�� (Born &

Wolf, 1983) must be larger than the projection 2t tan �B� � of the

in¯uence domain, along the direction of the incoming beam. It

should be underlined that these results can also be obtained

using the formalism of the dynamical theory (Mocella et al.,

2000).

Conditions (3) and (4) summarize the locally plane wave

coherence conditions. Condition (3) is satis®ed in our

experiments thanks to the long source-to-sample distance on

the ID19 beamline of the ESRF.

We have chosen an X-ray energy of 30 keV (�0 = 0.37 AÊ )

and the 111 re¯ection of a perfect silicon crystal in Laue

geometry [�B Si 111� � = 3.78�].

In order to ful®l the monochromaticity requirement (4), we

have selected the 333 re¯ection of the silicon double mono-

chromator of beamline ID19 at the ESRF for the incident

beam.

For the 333 monochromator re¯ection, the relative band-

width is ��=�0� �333 = 7.95 � 10ÿ6. We work in the vertical

diffraction plane, in which the source size a is minimum

(�50 mm).

3. Application to X-ray refractometry

3.1. Existing refractometric methods

The refractive index n of materials for X-rays is very slightly

smaller than unity (n � 1ÿ 10ÿ6, 1ÿ 10ÿ7) and requires

special arrangements to be measured. The interferometric

technique, using the Bonse±Hart L±L±L interferometer

(Bonse & Hart, 1965a,b, 1968) allows accurate determination

of the refractive index (Bonse & HellkoÈ tter, 1969; Bonse &

Materlik, 1976; Hart & Siddons, 1981; Templeton et al., 1980)

and is generally considered as the most accurate method. The

sample to be measured is introduced into one of the inter-

ferometer beams and the refractive index is determined by

measuring the displacement of the fringes. The sample must be

of high quality and the absorption becomes a problem for an

energy below 2 keV (Lengeler, 1994).

Another technique is based on the measurement of the

critical glancing angle for total external re¯ection; accurate

measurements must take absorption and surface roughness

into account (Stanglmeier et al., 1992). Even if such a method

is, in principle, less accurate than interferometry, it overcomes

some limitations. The measurements can be extended below

50 eV or bulk material can be used, whereas interferometry

requires thin materials because of absorption.

The measurement of the refractive index using the angular

deviation through a prism is the oldest method, also for

X-rays. The experimental set-up, however, is different from

the classical one of visible optics, because the refractive index

is very close to unity. In the X-ray set-up (James, 1965), a small

beam is refracted, near glancing-incidence condition, at the

®rst surface of the prism of apex angle 90� and exits perpen-

dicularly through the other surface without refraction. The

deviation of the beam is measured, using the subharmonic

beam �=2� � which is totally re¯ected on the ®rst surface. This
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Figure 2
Example of a locally plane wave topograph. Silicon 111 re¯ection for an
energy of 30 keV.
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technique has been revisited by Fontaine et al. (1985) to

measure the refractive index of GaAs near the Ga and As K

edges, using synchrotron radiation. Their measurements

present a strong discrepancy with the theory near the As edge:

this could not be completely corrected by taking into account

absorption (Warburton & Ludwig, 1986).

Another type of experimental set-up for measurement of a

refractive index with a prism has been used by Malgrange et al.

(1968). It is based on the angular ampli®cation produced in a

perfect crystal under the condition of Bragg diffraction.

The angular deviation induced by a prism can also be

measured with a monolithic Laue±Laue diffractometer

(Deutch & Hart, 1984a,b) which allows angle measurements

with an accuracy of 60 ms.

3.2. The present method

The locally plane wave set-up produces an oscillatory

pro®le I�x� = R x=L0 cos �B� � (Fig. 2) which can be used as the

reference to analyse the phase modi®cation induced when

introducing an object in a part of the incident beam, along the

path between the source and the crystal analyser. The general

relation between the phase modulation ' x� � and the local

angular deviation " x� � is

" x� � � ��=2���d�=dx�: �5�
A prism is a simple phase object that introduces a constant

linear gradient in the phase of the incident wave.

The angular deviation of the beam, of apex angle 2� (Fig. 3),

through the prism is

" � � tan '� � � tan 2�ÿ '� �� �; �6�
where the real part of the refractive index is n = 1ÿ � and

where it is taken into account that �� 1; ' is the angle of

incidence on the ®rst surface of the prism. The prism creates a

virtual image S0 of the source S. S0 is clearly separated from S,

because the distance SS0 is the product of the angular devia-

tion " by the very large source-to-crystal distance L0. The

point at the exact Bragg position, on the entrance surface, is

displaced by � = SS0 = "L0. Thus the � displacement of the

fringe pattern is also

� � "L0 � � tan '� � � tan 2�ÿ '� �� �L0: �7�
By inserting the prism into a part of the incident beam only, we

obtain both the displaced and the non-displaced patterns on

the same image. The displacement �, from which we can

calculate �, is thus easily measured. This measurement may be

easily repeated for different wavelengths by changing the

monochromator setting.

The accuracy of � depends on the accuracy of the

measurement of the displacement � (this is limited by the

detector resolution, which is the grain size of the ®lm in the

present case). Therefore it is suitable to increase the dis-

placement � by increasing the bracketed term in (7). This can

be achieved by working under grazing-incidence conditions.

This implies, however, that the path of the beam inside the

sample becomes larger. If the photoelectric absorption of the

material is large, the contrast in the image may become too

weak.

On the other hand, the accuracy of the measurement

depends also on the accuracy of the determination of both

angles � and '. The relative error is minimum if these angles

are approximately equal. In such a case, the displacement �
[equation (7)] is then not too sensitive to the value of ',

� � "L0 � 2�L0 tan �: �8�
In order to demonstrate the validity of our technique, we have

performed measurements with a prism of aluminium and with

a prism of plexiglas; the apex angle 2� of both prisms was 90�

and the incidence angle ' = � = 45�.
Fig. 4 presents the fringes displacement induced by the

plexiglas prism for an energy of 30 keV. In a direction

perpendicular to the fringes, the displacement is � = 85 mm

from which we calculate the real part of the refractive index

decrement 1ÿ n = � = 2:9� 10ÿ7, which is correct. For

aluminium we have obtained � = 6:0� 10ÿ7, which is also

good.

This technique using a ®xed crystal analyser could be

extended to the case of more complicated phase objects,

Figure 3
Schematic representation of the set-up: a prism is placed in the incident
beam. One measures the displacement � in the fringe pattern to measure
the angular deviation due to the refraction in the prism.

Figure 4
Superposition of the fringe diffraction patterns. The pattern with the
plexiglas prism is located in the lower part of the ®gure. The displacement
�, measured in a direction perpendicular to the fringes, is clearly visible.



similarly to the differential phase-imaging technique using a

rotating crystal analyser, as shown by Forster et al. (1980),

Davis et al. (1995a,b), Bushuev et al. (1996), Nikulin (1997)

and Chapman et al. (1998). Such techniques are notably

different from the phase contrast method based on free-space

propagation, without crystal analyser (Cloetens et al., 1996).

4. Visualization of the strain field around an isolated
defect.

X-ray diffraction topography is used to visualize defects in

crystalline materials. However, the details of an image are

quite dif®cult to understand because the contrast of the image

results from interferences between the wave®elds which are

diffracted and/or curved in the vicinity of the defect.

A locally plane wave image contains information about the

phase of the propagating wave and is thus sensitive to

perturbations in the path of the waves inside the crystal. In the

previous section, we have exploited this information to

measure the angular deviation induced by an object located

outside the crystal. We can also consider such deviation

induced inside the crystal. The displacement ®eld u r� � asso-

ciated with a crystal defect leads to an effective local dis-

orientation �� of the re¯ecting planes, representing a local

variation of the Bragg condition, that can be expressed as

(Authier, 1967)

�� r� � � ÿ 1

k sin 2�B

@fh � u r� �g
@sh

; �9�

where h is the reciprocal-lattice vector for the considered

re¯ection and sh is the coordinate along the diffracted direc-

tion.

We thus observe an angular deviation that is the addition of

the two contributions (1) and (9),

��obs x� � � ��in x� � � �� x� �: �10�
��obs can be easily measured using, as reference, the fringe

pattern in a part of the crystal far from the defect where the

crystal can be considered as perfect.

Fig. 5 shows an image of a scratch on the surface of the

crystal, for two different settings. Fig. 5(a) is the locally plane

wave image, Fig. 5(b) is a classical topograph using the 111

diffracted wave of the monochromator. The shape of the

scratch and a black and white contrast near the core of the

defect is the only information contained in Fig. 5(b).

In Fig. 5(a), one observes the distortion of the perfect

pattern fringes induced by the strain ®eld in a large area, quite

far from the core of the defect. The fringe pattern represents

contour lines for ��obs. Their value may be known, following

all fringes in a perfect area of the crystal, where ��obs = ��in.

In a perfect part of the crystal, ��in can be found for each

fringe by measuring its distance from the fringe corresponding

to the exact Bragg condition.

This illustrates a simple procedure to measure the effective

misorientation �� x� �, linked to the displacement ®eld u r� �.
When the crystal is slightly rotated, the position of the

fringe, corresponding to the exact Bragg incidence along the

entrance surface (point O in Fig. 1), is shifted. The new fringe

pattern crosses the defect differently (Fig. 6); this can be useful
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Figure 5
Contour fringes around a scratch. The angular departure is measured by
following the fringes from a perfect part of the crystal.

Figure 6
Changes in the contrast of the core of the defect for a larger Bragg angle
(a), almost at exact Bragg position (b) and for a smaller Bragg angle (c).
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in the analysis of the strain associated with the defect. It can be

noted that the black part of the image of the core of the defect

is always in the direction of the exact Bragg position (Figs. 6a

and 6c), as expected (Authier, 1967).

By translating the crystal in the beam and/or changing the

crystal orientation, one can easily explore the whole volume of

the crystal.

5. Conclusions

We have shown that diffraction by a nearly perfect crystal,

using a locally incident plane wave, can be used in a number of

applications.

The fringe diffraction pattern contains information about

the phase of the diffracted wave, which can be used for X-ray

refractometry as well as for the visualization of the strain ®eld

associated with isolated defects. An advantage of this tech-

nique is its simplicity. The experimental set-up used at ID19 of

the ESRF is very simple and the interpretation of experi-

mental results is straightforward. The refractive-index

measurement, using grazing incidence, can be very accurate

and comparable with that of interferometry �10ÿ3� �.
Concerning the strain-®eld visualization, our technique is

comparable in sensitivity with the measurement of minute

lattice imperfections using the ultra-plane-wave technique

(Kimura et al., 1994; Kawado, 1999), but using a simpler set-

up. Analogously to the measurement of spatial coherence in

the ultra-plane-wave case (Ishikawa, 1988; Tamasaku & Ishi-

kawa, 2001), the locally plane wave technique can be used for

a quantitative measurement of spatial coherence with a

simpler experimental arrangement, using a wedge-shaped

crystal (Mocella, 1999).

Convergent-beam electron diffraction (CBED) (see e.g.

Spence & Zuo, 1992), used in electron diffraction, could

suggest interesting applications for X-rays with a locally plane

wave setting. CBED is equivalent to a rocking-curve method

except that, instead of measuring the diffracted intensity as a

function of the angle of rotation of the crystal, the incident

beam contains a wide range of incident angles. The different

diffracted beams contribute to the pro®le of broadened

diffraction spots (Cowley, 1981).

This does not mean that the locally plane wave technique

has the same range of applications as CBED. In electron

diffraction, multiple-beam scattering is quite usual and the

coherent overlapping of CBED patterns for two re¯ections

allows an interferometric imaging (Spence & Cowley, 1978;

Tsuda & Tanaka, 1996). This could be investigated for X-rays,

using a three-beam diffraction, but might be dif®cult to realise.
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